Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus.
نویسندگان
چکیده
The anatomical and functional organization of dorsal thalamus (dTh) and ventral thalamus (vTh), two major regions of the diencephalon, is characterized by their parcellation into distinct cell groups, or nuclei, that can be histologically defined in postnatal animals. However, because of the complexity of dTh and vTh and difficulties in histologically defining nuclei at early developmental stages, our understanding of the mechanisms that control the parcellation of dTh and vTh and the differentiation of nuclei is limited. We have defined a set of regulatory genes, which include five LIM-homeodomain transcription factors (Isl1, Lhx1, Lhx2, Lhx5, and Lhx9) and three other genes (Gbx2, Ngn2, and Pax6), that are differentially expressed in dTh and vTh of early postnatal mice in distinct but overlapping patterns that mark nuclei or subsets of nuclei. These genes exhibit differential expression patterns in dTh and vTh as early as embryonic day 10.5, when neurogenesis begins; the expression of most of them is detected as progenitor cells exit the cell cycle. Soon thereafter, their expression patterns are very similar to those that we observe postnatally, indicating that unique combinations of these genes mark specific cell groups from the time they are generated to their later differentiation into nuclei. Our findings suggest that these genes act in a combinatorial manner to control the specification of nuclei-specific properties of thalamic cells and the differentiation of nuclei within dTh and vTh. These genes may also influence the pathfinding and targeting of thalamocortical axons through both cell-autonomous and non-autonomous mechanisms.
منابع مشابه
LIM genes parcellate the embryonic amygdala and regulate its development.
The mechanisms that regulate the development of the amygdaloid complex are as yet poorly understood. Here, we show that in the absence of the LIM-homeodomain (LIM-HD) gene Lhx2, a particular amygdaloid nucleus, the nucleus of the lateral olfactory tract (nLOT), is selectively disrupted. LIM family members are well suited for multiple roles in the development of complex structures because they p...
متن کاملThe LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain.
A comparative analysis of LIM-homeodomain (LIM-hd) expression patterns in the developing stage 32 Xenopus brain is presented. x-Lhx2, x-Lhx7, and x-Lhx9 were isolated and their expression, together with that of x-Lhx1 and x-Lhx5, was analyzed in terms of prosomeric brain development and LIM-hd combinatorial code and compared with mouse expression data. The results show an almost complete conser...
متن کاملDifferential expression of a transcription regulatory factor, the LIM domain only 4 protein Lmo4, in muscle sensory neurons.
In the stretch-reflex system, proprioceptive sensory neurons make selective synaptic connections with different subsets of motoneurons, according to the peripheral muscles they supply. To examine the molecular mechanisms that may influence the selection of these synaptic targets, we constructed single-cell cDNA libraries from sensory neurons that innervate antagonist muscles. Differential scree...
متن کاملCloning and developmental expression patterns of Dlx2, Lhx7 and Lhx9 in the medaka fish (Oryzias latipes)
We have isolated three homeodomain and LIM-homeodomain developmental transcription factors from the medaka fish (Oryzias latipes): OlDlx2, OlLhx7, and OlLhx9, and we have studied their expression patterns in the developing and adult brain. This analysis showed that OlDlx2 and OlLhx7 (together with OlNkx2.1b) delineate the subpallial divisions of the medaka telencephalon, and that OlLhx9 exhibit...
متن کاملExpression and Purification of Homeodomain
Homeobox genes encode transcription factors which play important roles in the developmental processes of many multicellular organisms. TGIFLX/Y (TGIFLX and TGIFLY) are members of the homeobox superfamily of genes. Their expressions are specifically detected in the human adult testis but their functions are remained to be investigated. In this investigation we cloned full length of TGIFLY cDNA a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2001